

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

L	T/P/D	C
4	-/-	4

(A40506) COMPUTER ORGANIZATION

Objectives:

- To understand basic components of computers.
- To explore the I/O organizations in depth.
- To explore the memory organization.
- To understand the basic chip design and organization of 8086 with assembly language programming.

UNIT-I

Basic Computer Organization – Functions of CPU, I/O Units, Memory:

Instruction: Instruction Formats- One address, two addresses, zero addresses and three addresses and comparison; addressing modes with numeric examples; Program Control- Status bit conditions, conditional branch instructions, Program Interrupts: Types of Interrupts.

UNIT-II

Input-Output Organizations- I/O Interface, I/O Bus and Interface
modules: I/O Vs memory Bus, Isolated Vs Memory-Mapped I/O, Asynchronous data Transfer- Strobe Control, Hand Shaking: Asynchronous Serial transfer- Asynchronous Communication interface, Modes of transfer- Programmed I/O, Interrupt Initiated I/O, DMA; DMA Controller, DMA Transfer, IOP-CPU-IOP Communication, Intel 8089 IOP.

UNIT-III

Memory Organizations

Memory hierarchy, Main Memory, RAM, ROM Chips, Memory Address Map, Memory Connection to CPU, associate memory , Cache Memory, Data Cache, Instruction cache, Miss and Hit ratio, Access time, associative, set associative, mapping , waiting into cache, Introduction to virtual memory.

UNIT-IV

8086 CPU Pin Diagram- Special functions of general purpose registers, Segment register, concept of pipelining, 8086 Flag register, Addressing modes of 8086.

UNIT-V

8086-Instruction formats: assembly Language Programs involving branch & Call instructions, sorting, evaluation of arithmetic expressions.

TEXT BOOKS:

- 1) Computer system Architecture: Morris Mano (UNIT-1,2,3).
- 2) Advanced Micro Processor and Peripherals- Hall/ A K Ray(UNIT-4,5).

REFERENCE BOOKS:

- 1) Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.
- 2) Structured Computer Organization – Andrew S. Tanenbaum, 4th Edition PHI/Pearson.
- 3) Fundamentals of Computer Organization and Design, - Sivarama Dandamudi Springer Int. Edition.
- 4) Computer Architecture a quantitative approach, John L. Hennessy and David A. Patterson, Fourth Edition Elsevier.
- 5) Computer Architecture: Fundamentals and principles of Computer Design, Joseph D. Dumas II, BS Publication.

Outcomes:

After this course students understand in a better way the I/O and memory organization in depth. They should be in a position to write assembly language programs for various applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD**II Year B.Tech. CSE-II Sem**

L	T/P/D	C
4	---	4

(A40507) DATABASE MANAGEMENT SYSTEMS**Objectives:**

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- To understand the relational database design principles.
- To become familiar with the basic issues of transaction processing and concurrency control.
- To become familiar with database storage structures and access techniques.

UNIT- I

Introduction-Database System Applications, Purpose of Database Systems, View of Data – Data Abstraction, Instances and Schemas, Data Models, Database Languages – DDL, DML, Database Access from Application Programs, Transaction Management, Data Storage and Querying, Database Architecture, Database Users and Administrators, History of Data base Systems.

Introduction to Data base design, ER diagrams, Beyond ER Design, Entities, Attributes and Entity sets, Relationships and Relationship sets, Additional features of ER Model, Conceptual Design with the ER Model, Conceptual Design for Large enterprises. Relational Model: Introduction to the Relational Model – Integrity Constraints over Relations, Enforcing Integrity constraints, Querying relational data, Logical data base Design, Introduction to Views – Destroying /altering Tables and Views.

UNIT- II

Relational Algebra and Calculus: Relational Algebra – Selection and Projection, Set operations, Renaming, Joins, Division, Examples of Algebra Queries, Relational calculus – Tuple relational Calculus – Domain relational calculus – Expressive Power of Algebra and calculus.

Form of Basic SQL Query – Examples of Basic SQL Queries, Introduction to Nested Queries, Correlated Nested Queries, Set – Comparison Operators, Aggregate Operators, NULL values – Comparison using Null values – Logical connectives – AND, OR and NOT – Impact on SQL Constructs, Outer Joins, Disallowing NULL values, Complex Integrity Constraints in SQL Triggers and Active Data bases.

UNIT- III

Introduction to Schema Refinement – Problems Caused by redundancy, Decompositions – Problem related to decomposition, Functional Dependencies - Reasoning about FDS, Normal Forms – FIRST, SECOND, THIRD Normal forms – BCNF –Properties of Decompositions- Loss less-join Decomposition, Dependency preserving Decomposition, Schema Refinement in Data base Design – Multi valued Dependencies – FOURTH Normal Form, Join Dependencies, FIFTH Normal form, Inclusion Dependencies.

UNIT- IV

Transaction Management-Transaction Concept- Transaction State- Implementation of Atomicity and Durability – Concurrent – Executions – Serializability- Recoverability – Implementation of Isolation – Testing for serializability.

Concurrency Control- Lock –Based Protocols – Timestamp Based Protocols- Validation- Based Protocols – Multiple Granularity.

Recovery System-Failure Classification-Storage Structure-Recovery and Atomicity – Log – Based Recovery – Recovery with Concurrent Transactions – Buffer Management – Failure with loss of nonvolatile storage-Advance Recovery systems- Remote Backup systems.

UNIT- V

Overview of Storage and Indexing: Data on External Storage, File Organization and Indexing – Clustered Indexes, Primary and Secondary Indexes, Index data Structures – Hash Based Indexing, Tree based Indexing, Comparison of File Organizations.

Tree Structured Indexing: Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM) B+ Trees: A Dynamic Index Structure, Search, Insert, Delete.

Hash Based Indexing: Static Hashing, Extendable hashing, Linear Hashing, Extendible vs. Linear Hashing.

TEXT BOOKS:

1. Data base Management Systems, Raghu Ramakrishnan, Johannes Gehrke, TMH, 3rd Edition, 2003.
2. Data base System Concepts, A.Silberschatz, H.F. Korth, S.Sudarshan, McGraw hill, VI edition, 2006.

REFERENCE BOOKS:

1. Database Systems, 6th edition, Ramez Elmasri, Shamkant B.Navathe, Pearson Education, 2013.
2. Database Principles, Programming, and Performance, P.O'Neil, E.O'Neil, 2nd ed., ELSEVIER.

3. Database Systems, A Practical approach to Design Implementation and Management Fourth edition, Thomas Connolly, Carolyn Begg, Pearson education.
4. Database System Concepts, Peter Rob & Carlos Coronel, Cengage Learning, 2008.
5. Fundamentals of Relational Database Management Systems, S.Sumathi, S.Esakkirajan, Springer.
6. Database Management System Oracle SQL and PL/SQL, P.K.Das Gupta, PHI.
7. Introduction to Database Management, M.L.Gillenson and others, Wiley Student Edition.
8. Database Development and Management, Lee Chao, Auerbach publications, Taylor & Francis Group.
9. Introduction to Database Systems, C.J.Date, Pearson Education.
10. Database Management Systems, G.K.Gupta, TMH.

Outcomes:

- Demonstrate the basic elements of a relational database management system.
- Ability to identify the data models for relevant problems.
- Ability to design entity relationship and convert entity relationship diagrams into RDBMS and formulate SQL queries on the respect data.
- Apply normalization for the development of application software's.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

L	T/P/D	C
4	4/-	4

(A40503) JAVA PROGRAMMING

Objectives:

- To understand object oriented programming concepts, and apply them in problem solving.
- To learn the basics of java Console and GUI based programming.

UNIT- I

OOP concepts – Data abstraction, encapsulation, inheritance, benefits of inheritance, polymorphism, classes and objects, Procedural and object oriented programming paradigms

Java programming - History of Java, comments, data types, variables, constants, scope and life time of variables, operators, operator hierarchy, expressions, type conversion and casting, enumerated types, control flow - block scope, conditional statements, loops, break and continue statements, simple java stand alone programs, arrays, console input and output, formatting output, constructors, methods, parameter passing, static fields and methods, access control, this reference, overloading methods and constructors, recursion, garbage collection, building strings, exploring string class.

UNIT- II

Inheritance - Inheritance hierarchies, super and sub classes, Member access rules, super keyword, preventing inheritance: final classes and methods, the Object class and its methods

Polymorphism- dynamic binding, method overriding, abstract classes and methods.

Interfaces – Interfaces vs. Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface.

Inner classes – Uses of inner classes, local inner classes, anonymous inner classes, static inner classes, examples.

Packages-Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages.

UNIT- III

Exception handling – Dealing with errors, benefits of exception handling, the classification of exceptions- exception hierarchy, checked exceptions and unchecked exceptions, usage of try, catch, throw, throws and finally, re-throwing exceptions, exception specification, built in exceptions, creating

own exception sub classes.

Multithreading - Differences between multiple processes and multiple threads, thread states, creating threads, interrupting threads, thread priorities, synchronizing threads, inter-thread communication, producer consumer pattern.

UNIT- IV

Collection Framework in Java – Introduction to Java Collections, Overview of Java Collection frame work, Generics, Commonly used Collection classes- ArrayList, Vector, Hash table, Stack, Enumeration, Iterator, StringTokenizer, Random, Scanner, calendar and Properties

Files – streams- byte streams, character streams, text Input/output, binary Input/output, random access file operations, File management using File class.

Connecting to Database - JDBC Type 1 to 4 drivers, connecting to a database, querying a database and processing the results, updating data with JDBC.

UNIT- V

GUI Programming with Java - The AWT class hierarchy, Introduction to Swing, Swing vs. AWT, Hierarchy for Swing components, Containers – JFrame, JApplet, JDialog, JPanel, Overview of some swing components- JButton, JLabel, JTextField, JTextArea, simple swing applications, Layout management - Layout manager types – border, grid and flow

Event handling - Events, Event sources, Event classes, Event Listeners, Relationship between Event sources and Listeners, Delegation event model, Examples: handling a button click, handling mouse events, Adapter classes.

Applets – Inheritance hierarchy for applets, differences between applets and applications, life cycle of an applet, passing parameters to applets, applet security issues.

TEXT BOOK:

- Java Fundamentals – A comprehensive Introduction, Herbert Schildt and Dale Skrien, TMH.

REFERENCE BOOKS:

- Java for Programmers, P.J.Deitel and H.M.Deitel, Pearson education (OR) Java: How to Program P.J.Deitel and H.M.Deitel, PHI.
- Object Oriented Programming through Java, P.Radha Krishna, Universities Press.
- Thinking in Java, Bruce Eckel, Pearson Education
- Programming in Java, S.Malhotra and S.Choudhary, Oxford Univ. Press.

Outcomes:

- Understanding of OOP concepts and basics of java programming (Console and GUI based).
- The skills to apply OOP and Java programming in problem solving.
- Should have the ability to extend his/her knowledge of Java programming further on his/her own.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

L	T/P/D	C
4	--/-	4

(A40009) ENVIRONMENTAL STUDIES

Objectives:

1. Understanding the importance of ecological balance for sustainable development.
2. Understanding the impacts of developmental activities and mitigation measures.
3. Understanding of environmental policies and regulations

UNIT-I :

Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure and function of an ecosystem, Food chains, food webs and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II:

Natural Resources: **Classification of Resources:** Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT-III:

Biodiversity and Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV:

Environmental Pollution and Control Technologies: **Environmental Pollution:** Classification of pollution, **Air Pollution:** Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. **Water pollution:** Sources and types of pollution, drinking water quality standards. **Soil Pollution:** Sources and types, Impacts of modern agriculture, degradation of soil. **Noise Pollution:** Sources and Health hazards, standards, **Solid waste:** Municipal Solid Waste management, composition and

characteristics of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary, Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems And Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol and Montréal Protocol.

UNIT-V:

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. **EIA:** EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

SUGGESTED TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:

1. Environmental Science: towards a sustainable future by Richard T.Wright. 2008 PHL Learning Private Ltd. New Delhi.
2. Environmental Engineering and science by Gilbert M.Masters and Wendell P. Ela .2008 PHI Learning Pvt. Ltd.
3. Environmental Science by Daniel B.Botkin & Edward A.Keller, Wiley INDIA edition.
4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
5. Text book of Environmental Science and Technology - Dr. M. Anji Reddy 2007, BS Publications.

Outcomes:

Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which inturn helps in sustainable development.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

L	T/P/D	C
4	-/-	4

(A40509) FORMAL LANGUAGES AND AUTOMATA THEORY

Objectives:

The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.

- 1 Classify machines by their power to recognize languages.
- 2 Employ finite state machines to solve problems in computing.
- 3 Explain deterministic and non-deterministic machines.
- 4 Comprehend the hierarchy of problems arising in the computer sciences.

UNIT- I

Fundamentals : Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite automaton model, acceptance of strings, and languages, deterministic finite automaton and non deterministic finite automaton, transition diagrams and Language recognizers. **Finite Automata** NFA with e transitions - Significance, acceptance of languages. Conversions and Equivalence : Equivalence between NFA with and without e-transitions, NFA to DFA conversion, minimisation of FSM, equivalence between two FSMs, Finite Automata with output- Moore and Melay machines.

UNIT-II

Regular Languages : Regular sets, regular expressions, identity rules, Constructing finite Automata for a given regular expressions, Conversion of Finite Automata to Regular expressions. Pumping lemma of regular sets, closure properties of regular sets (proofs not required) **Grammar Formalism** Regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and FA, inter conversion, Context free grammar, derivation trees, sentential forms. Right most and leftmost derivation of strings.

UNIT- III

Context Free Grammars : Ambiguity in context free grammars. Minimisation of Context Free Grammars. Chomsky normal form, Greiback normal form, Pumping Lemma for Context Free Languages. Enumeration of properties of CFL (proofs omitted). **Push Down Automata :** Push down automata, definition, model, acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence. Equivalence of CFL and PDA, interconversion. (Proofs not required). Introduction to DCFL and DPDA.

UNIT- IV

Turing Machine : Turing Machine, definition, model, design of TM, Computable functions, recursively enumerable languages. Church's hypothesis, counter machine, types of Turing machines (proofs not required), linear bounded automata and context sensitive language.

UNIT- V

Computability Theory : Chomsky hierarchy of languages, decidability of problems, Universal Turing Machine, undecidability of posts. Correspondence problem, Turing reducibility, Definition of P and NP problems, NP complete and NP hard problems.

TEXT BOOKS :

1. "Introduction to Automata Theory Languages and Computation" Hopcroft H.E. and Ullman J. D. Pearson Education.
2. Introduction to Theory of Computation –Sipser 2nd edition Thomson

REFERENCE BOOKS :

1. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan Rama R.
2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
3. Theory Of Computation: A Problem-Solving Approach, Kavi Mahesh Wiley India Pvt. Ltd.
4. "Elements of Theory of Computation", Lewis H.P. & Papadimitriou C.H. Pearson /PHI.
5. Theory of Computer Science – Automata languages and computation -Mishra and Chandrashekaran, 2nd edition, PHI.

Outcomes:

- Graduate should be able to understand the concept of abstract machines and their power to recognize the languages.
- Attains the knowledge of language classes & grammars relationship among them with the help of Chomsky hierarchy.
- Graduate will be able to understanding the pre-requisites to the course compiler or advanced compiler design.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD**II Year B.Tech. CSE-II Sem**

L	T/P/D	C
4	-/-	4

(A40508) DESIGN AND ANALYSIS OF ALGORITHMS**Objectives:**

- To analyze performance of algorithms.
- To choose the appropriate data structure and algorithm design method for a specified application.
- To understand how the choice of data structures and algorithm design methods impacts the performance of programs.
- To solve problems using algorithm design methods such as the greedy method, divide and conquer, dynamic programming, backtracking and branch and bound.
- Prerequisites (Subjects) Data structures, Mathematical foundations of computer science.

UNIT- I

Introduction: Algorithm, Pseudo code for expressing algorithms, Performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, Probabilistic analysis, Amortized complexity.

Divide and conquer: General method, applications-Binary search, Quick sort, Merge sort, Strassen's Matrix Multiplication.

UNIT- II

Searching and Traversal Techniques: Efficient non-recursive binary tree traversal algorithms, Disjoint set operations, union and find algorithms, Spanning trees, Graph traversals- Breadth first search and Depth first search, AND/OR graphs, game trees, Connected Components, Bi-connected components.

UNIT- III

Greedy method: General method, applications-Job sequencing with deadlines, 0/1 knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

Dynamic Programming: General method, applications-Multistage graphs, Optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem, Traveling sales person problem, Reliability design.

UNIT- IV

Backtracking: General method, applications-n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles.

Branch and Bound: General method, applications - Traveling sales person problem, 0/1 knapsack problem-LC Branch and Bound solution, FIFO Branch and Bound solution.

UNIT- V

NP-Hard and NP-Complete problems: Basic concepts, Non-deterministic algorithms, NP - Hard and NP- Complete classes, NP-Hard problems, Cook's theorem.

TEXT BOOKS:

1. Fundamentals of Computer Algorithms, 2nd Edition, Ellis Horowitz, Satraj Sahni and S.Rajasekharan, Universities Press, 2008.
2. Foundations of Algorithms, 4th edition, R.Neapolitan and K.Naimipour Jones and Bartlett Learning.
3. Design and Analysis of Algorithms, P.H.Dave, H.B.Dave, Pearson Education, 2008.

REFERENCE BOOKS:

1. Computer Algorithms, Introduction to Design and Analysis, 3rd Edition, Sara Baase, Allen, Van, Gelder, Pearson Education.
2. Algorithm Design: Foundations, Analysis and Internet examples, M.T.Goodrich and R.Tomassia, John Wiley and sons.
3. Fundamentals of Sequential and Parallel Algorithms, K.A.Berman and J.L.Paul, Cengage Learning.
4. Introduction to the Design and Analysis of Algorithms, A.Levitin, Pearson Education.
5. Introduction to Algorithms, 3rd Edition, T.H.Cormen, C.E.Leiserson, R.L.Rivest, and C.Stein, PHI Pvt.Ltd.
6. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson Education, 2004.

Outcomes:

- Be able to analyze algorithms and improve the efficiency of algorithms.
- Apply different designing methods for development of algorithms to realistic problems, such as divide and conquer, greedy and etc.
- Ability to understand and estimate the performance of algorithm.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

L	T/P/D	C
-	-/3/-	2

(A40585) JAVA PROGRAMMING LAB

Objectives:

To introduce java compiler and eclipse platform.

To impart hand on experience with java programming.

Note:

- 1) Use Linux and MySQL for the Lab Experiments. Though not mandatory, encourage the use of Eclipse platform.
- 2) The list suggests the minimum program set. Hence, the concerned staff is requested to add more problems to the list as needed.
- 3) Use Eclipse or Netbean platform and acquaint with the various menus. Create a test project, add a test class and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- 4) Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 5) Develop an applet in Java that displays a simple message.
- 6) Develop an applet in Java that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named "Compute" is clicked.
- 7) Write a Java program that creates a user interface to perform integer divisions. The user enters two numbers in the text fields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a Number Format Exception. If Num2 were Zero, the program would throw an Arithmetic Exception. Display the exception in a message dialog box.
- 8) Write a Java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.
- 9) Write a Java program that connects to a database using JDBC and

does add, delete, modify and retrieve operations.

- 7) Write a Java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green with radio buttons. On selecting a button, an appropriate message with "Stop" or "Ready" or "Go" should appear above the buttons in selected color. Initially, there is no message shown.
- 8) Write a Java program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contains only the method printArea () that prints the area of the given shape.
- 9) Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Labels in Grid Layout.
- 10) Write a Java program that handles all mouse events and shows the event name at the center of the window when a mouse event is fired (Use Adapter classes).
- 11) Write a Java program that loads names and phone numbers from a text file where the data is organized as one line per record and each field in a record are separated by a tab (t). It takes a name or phone number as input and prints the corresponding other value from the hash table (hint: use hash tables).
- 12) Implement the above program with database instead of a text file.
- 13) Write a Java program that takes tab separated data (one record per line) from a text file and inserts them into a database.
- 14) Write a java program that prints the meta-data of a given table

TEXT BOOK:

1. Java Fundamentals – A comprehensive Introduction, Herbert Schildt and Dale Skrien, TMH.

REFERENCE BOOKS:

1. Java for Programmers, P.J.Deitel and H.M.Deitel, Pearson education (OR) Java: How to Program P.J.Deitel and H.M.Deitel, PHI.
2. Object Oriented Programming through Java, P.Radha Krishna, Universities Press.
3. Thinking in Java, Bruce Eckel, Pearson Education.
4. Programming in Java, S.Malhotra and S.Choudhary, Oxford University Press.

Outcomes:

- Basics of java programming, multi-threaded programs and Exception handling.
- The skills to apply OOP in Java programming in problem solving.
- Ability to access data from a DB with Java programs.
- Use of GUI components (Console and GUI based).

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. CSE-II Sem

L	T/P/D	C
-	-/3/-	2

(A40584) DATABASE MANAGEMENT SYSTEMS LAB

Objectives:

This lab enables the students to practice the concepts learnt in the subject DBMS by developing a database for an example company named "Roadway Travels" whose description is as follows. The student is expected to practice the designing, developing and querying a database in the context of example database "Roadway travels". Students are expected to use "Mysql" database.

Roadway Travels

"Roadway Travels" is in business since 1997 with several buses connecting different places in India. Its main office is located in Hyderabad.

The company wants to computerize its operations in the following areas:

- Reservations and Ticketing
- Cancellations

Reservations & Cancellation:

Reservations are directly handled by booking office. Reservations can be made 30 days in advance and tickets issued to passenger. One Passenger/person can book many tickets (to his/her family).

Cancellations are also directly handled at the booking office.

In the process of computerization of Roadway Travels you have to design and develop a Database which consists the data of Buses, Passenger, Tickets, and Reservation and cancellation details. You should also develop query's using SQL to retrieve the data from the database.

The above process involves many steps like 1. Analyzing the problem and identifying the Entities and Relationships, 2. E-R Model 3. Relational Model 4. Normalization 5. Creating the database 6. Querying. Students are supposed to work on these steps week wise and finally create a complete "Database System" to Roadway Travels. Examples are given at every experiment for guidance to students.

Experiment 1: E-R Model

Analyze the carefully and come up with the entities in it. Identify what data has to be persisted in the database. This contains the entities, attributes etc. Identify the primary keys for all the entities. Identify the other keys like candidate keys, partial keys, if any.

Example: Entities:

1. BUS

07 COMPUTER SCIENCE AND ENGINEERING 2013-14

2. Ticket

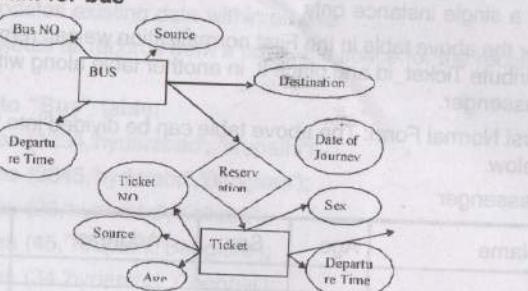
3. Passenger

Relationships:

1. Reservation

2. Cancellation

PRIMARY KEY ATTRIBUTES:


1. Ticket ID (Ticket Entity)
2. Passport ID (Passenger Entity)
3. Bus_NO(Bus Entity)

Apart from the above mentioned entities you can identify more. The above mentioned are few.

Note: The student is required to submit a document by writing the Entities and Keys to the lab teacher.

Experiment 2: Concept design with E-R Model

Relate the entities appropriately. Apply cardinalities for each relationship. Identify strong entities and weak entities (if any). Indicate the type of relationships (total / partial). Try to incorporate generalization, aggregation, specialization etc wherever required.

Example: E-R diagram for bus

Note: The student is required to submit a document by drawing the E-R Diagram to the lab teacher.

Experiment 3: Relational Model

Represent all the entities (Strong, Weak) in tabular fashion. Represent relationships in a tabular fashion. There are different ways of representing relationships as tables based on the cardinality. Represent attributes as columns in tables or as tables based on the requirement. Different types of attributes (Composite, Multi-valued, and Derived) have different way of representation.

Example: The passenger tables look as below. This is an example. You can

add more attributes based on your E-R model. This is not a normalized table.

Passenger

Name	Age	Sex	Address	Ticket_id	Passport ID

Note: The student is required to submit a document by Represent relationships in a tabular fashion to the lab teacher.

Experiment 4: Normalization

Database normalization is a technique for designing relational database tables to minimize duplication of information and, in so doing, to safeguard the database against certain types of logical or structural problems, namely data anomalies. For example, when multiple instances of a given piece of information occur in a table, the possibility exists that these instances will not be kept consistent when the data within the table is updated, leading to a loss of data integrity. A table that is sufficiently normalized is less vulnerable to problems of this kind, because its structure reflects the basic assumptions for when multiple instances of the same information should be represented by a single instance only.

For the above table in the First normalization we can remove the multi valued attribute Ticket_id and place it in another table along with the primary key of passenger.

First Normal Form: The above table can be divided into two tables as shown below.

Passenger

Name	Age	Sex	Address	Passport ID

Passport ID	Ticket_id

You can do the second and third normal forms if required. Any how Normalized tables are given at the end.

Experiment 5: Installation of MySql and practicing DDL commands

Installation of MySql. In this week you will learn Creating databases, How to create tables, altering the database, dropping tables and databases if not required. You will also try truncate, rename commands etc.

Example for creation of a normalized "Passenger" table.

```
CREATE TABLE Passenger (
    Passport_id INTEGER PRIMARY KEY,
    Name VARCHAR (50) Not NULL,
    Age Integer Not NULL,
    Sex Char,
    Address VARCHAR (50) Not NULL);
```

Similarly create all other tables.

Note: Detailed creation of tables is given at the end.

Experiment 6: Practicing DML commands

DML commands are used to for managing data within schema objects. Some examples:

- SELECT - retrieve data from the a database
- INSERT - insert data into a table
- UPDATE - updates existing data within a table
- DELETE - deletes all records from a table, the space for the records remain

Inserting values into "Bus" table:

```
Insert into Bus values (1234,'hyderabad', 'tirupathi');
```

```
Insert into Bus values (2345,'hyderabad', 'Banglore');
```

```
Insert into Bus values (23,'hyderabad', 'Kolkata');
```

```
Insert into Bus values (45,'Tirupathi', 'Banglore');
```

```
Insert into Bus values (34,'hyderabad', 'Chennai');
```

Inserting values into "Passenger" table:

```
Insert into Passenger values (1, 45,'ramesh', 45,'M','abc123');
```

```
Insert into Passenger values (2, 78,'geetha', 36,'F','abc124');
```

```
Insert into Passenger values (45, 90,'ram', 30,'M','abc12');
```

```
Insert into Passenger values (67, 89,'ravi', 50,'M','abc14');
```

```
Insert into Passenger values (56, 22,'seetha', 32,'F','abc55');
```

Few more Examples of DML commands:

```
Select * from Bus; (selects all the attributes and display)
```

UPDATE BUS SET Bus No = 1 WHERE BUS NO=2;

Experiment 7: Querying

In this week you are going to practice queries (along with sub queries) using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.

Practice the following Queries:

1. Display unique PNR_no of all passengers.
2. Display all the names of male passengers.
3. Display the ticket numbers and names of all the passengers.
4. Find the ticket numbers of the passengers whose name start with 'r' and ends with 'h'.
5. Find the names of passengers whose age is between 30 and 45.
6. Display all the passengers names beginning with 'A'
7. Display the sorted list of passengers names

Experiment 8 and Experiment 9: Querying (continued...)

You are going to practice queries using Aggregate functions (COUNT, SUM, AVG, and MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.

1. Write a Query to display the Information present in the Passenger and cancellation tables. Hint: Use UNION Operator.
2. Display the number of days in a week on which the 9W01 bus is available.
3. Find number of tickets booked for each PNR_no using GROUP BY CLAUSE. Hint: Use GROUP BY on PNR_No.
4. Find the distinct PNR numbers that are present.
5. Find the number of tickets booked by a passenger where the number of seats is greater than 1. Hint: Use GROUP BY, WHERE and HAVING CLAUSES.
6. Find the total number of cancelled seats.

Experiment 10: Triggers

In this week you are going to work on Triggers. Creation of insert trigger, delete trigger, update trigger. Practice triggers using the above database.

Eg: CREATE TRIGGER updcheck BEFORE UPDATE ON passenger

FOR EACH ROW

BEGIN

IF NEW.Ticketno > 60 THEN

SET New.Ticket no = Ticket no;

ELSE

SET New.Ticketno = 0;

END IF;

END;

Experiment 11: Procedures

In this session you are going to learn Creation of stored procedure, Execution of procedure and modification of procedure. Practice procedures using the above database.

Eg:CREATE PROCEDURE myProc()

BEGIN

SELECT COUNT(Tickets) FROM Ticket WHERE age>=40;

End;

Experiment 12: Cursors

In this week you need to do the following: Declare a cursor that defines a result set.

Open the cursor to establish the result set. Fetch the data into local variables as needed from the cursor, one row at a time. Close the cursor when done

CREATE PROCEDURE myProc(in_customer_id INT)

BEGIN

DECLARE v_id INT;

DECLARE v_name VARCHAR (30);

DECLARE c1 CURSOR FOR SELECT stdId, stdFirstname FROM students WHERE stdId = in_customer_id;

OPEN c1;

FETCH c1 into v_id, v_name;

Close c1;

END;

Tables

BUS

Bus No: Varchar: PK (public key)

Source : Varchar

Destination : Varchar

Passenger

PPNO: Varchar(15)) : PK

Name: Varchar(15)

Age : int (4)
 Sex:Char(10) : Male / Female
 Address: VarChar(20)
Passenger_Tickets
 .PPNO: Varchar(15) : PK
 Ticket_No: Numeric (9)
Reservation
 PNR_No: Numeric(9) : FK
 Journey_date : datetime(8)
 No_of_seats : int (8)
 Address : Varchar (50)
 Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer
 Status: Char (2) : Yes / No
Cancellation
 PNR_No: Numeric(9) : FK -
 Journey_date : datetime(8)
 No_of_seats : int (8)
 Address : Varchar (50)
 Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer
 Status: Char (2) : Yes / No
Ticket
 Ticket_No: Numeric (9): PK
 Journey_date : datetime(8)
 Age : int (4)
 Sex:Char(10) : Male / Female
 Source : Varchar
 Destination : Varchar
 Dep_time : Varchar

REFERENCE BOOKS:

1. Introduction to SQL, Rick F.Vander Lans, Pearson education.
2. Oracle PL/SQL, B.Rosenzweig and E.Silvestrova,Pearson education.
3. Oracle PL/SQL Programming,Steven Feuerstein,SPD.
4. SQL & PL/SQL for Oracle 10g, Black Book, Dr.P.S.Deshpande, Dream

DASA Tech.

5. Oracle Database 11g PL/SQL Programming, M.Mc Laughlin,TMH.
6. SQL Fundamentals, J.J.Patrick, Pearson Education.

Outcomes:

- Ability to design and implement a database schema for given problem.
- Be capable to Design and build a GUI application.
- Apply the normalization techniques for development of application software to realistic problems.
- Ability to formulate queries using SQL DML/DDL/DCL commands.

EngineersHub

www.engineershup.in